jinnian金年会,jinnianhui金年会,金年会官网登录入口

行业动态

聚焦行业动态,洞悉行业发展

真空熔炼炉如何清理内腔
发布时间:2018-10-31   浏览:2165次

  真空熔炼炉炉体上部内的中心位置设置的一个不锈钢的熔炼池通过密封装置与出料导槽固定连接,出料导槽另一端固定在炉体的炉壁上;熔炼池的上方的炉盖上中心位置设置的卸料螺杆,穿过熔炼池伸入至出料导槽,炉盖上卸料螺杆一侧设置的烟囱出口与熔炼池连通;新型采用***燃气烧嘴,天然气为加热原料,热值高,熔炼速度快,并且能够随意移动生产,填补了硼砂熔炼设备的空白;具有能耗低、热利用率高、体积小,结构合理、维护检修方便、成本低的特点。

PA炉2.jpg

  使用真空熔炼炉将机械泵拉杆逆时针旋转一下轻轻外拉至不能拉动再顺时针旋转一下锁定。等待真空表指针为“-0.1”后按下复合真空计左表头的红色按钮,等待将腔内真空抽至低于中间档3Pa,同时继续紧固腔门上的螺丝(若超过5分钟未能将真空抽至低于3Pa,请将拉杆按a)步骤所示手法推进2分钟后再拉出)。

  真空熔炼炉的清理内腔工作:

  1.顺时针旋转变频器上的变频旋钮至铜辊转速为5m/s;

  2.用沾有丙酮的纸巾擦拭真空熔炼炉铜辊外径表面;

  3.用金相砂纸轻轻擦拭真空熔炼炉外沿;

  4.重复第2步;

  5.逆时针旋转变频器上的变频旋钮至铜辊转速为“0”;

  6.用沾有丙酮的纸巾擦拭真空熔炼炉腔体其他地方。


免责声明:本站部分图片和文字来源于网络收集整理,仅供学习交流,版权归原作者所有,并不代表我站观点。本站将不承担任何法律责任,如果有侵犯到您的权利,请及时金年会官网登录入口删除。

相关推荐

12 March 2024
探秘气相沉积炉的工作原理与应用领域

探秘气相沉积炉的工作原理与应用领域

  探秘气相沉积炉的工作原理与应用领域  气相沉积炉,作为现代材料科学领域的一种重要设备,以其独特的工作原理和广泛的应用领域引起了广泛关注。这种设备通过精确控制气体化学反应,实现材料在基体上的逐层沉积,从而制备出具有特定结构和性能的材料。气相沉积炉厂家jinnian金年会将深入剖析气相沉积炉的工作原理,探讨其应用领域,并展望未来的发展趋势。  一、气相沉积炉的工作原理  气相沉积炉的工作原理主要基于化学反应和物理过程,通过控制气体分子在基体表面的沉积和反应,从而制备出所需的材料。  气体输运:在气相沉积炉中,首先需要将反应气体引入炉内。这些气体可以通过管道系统精确地输送到炉内的反应区域。  化学反应:当反应气体到达炉内的反应区域时,它们会在一定的温度和压力条件下发生化学反应。这些化学反应可以是分解、还原、氧化等,具体取决于所使用的气体种类和反应条件。  材料沉积:随着化学反应的进行,生成的物质会逐渐沉积在基体表面。这些沉积物可以是薄膜、纳米颗粒或其他形态的材料。通过精确控制反应条件和沉积过程,可以实现材料在基体上的逐层生长。  二、气相沉积炉的应用领域  气相沉积炉在多个领域具有广泛的应用价值,特别是在材料制备、电子器件、光学器件以及能源转换等领域。  材料制备:气相沉积炉可用于制备各种高性能的薄膜材料,如金属、氧化物、氮化物等。这些薄膜材料在航空航天、电子、光学等领域具有广泛的应用。  电子器件:气相沉积炉在电子器件的制造过程中发挥着重要作用。通过精确控制沉积过程,可以制备出高质量的半导体材料、导电薄膜以及绝缘材料等,用于制造集成电路、传感器、显示器等电子器件。  光学器件:气相沉积炉还可用于制备光学薄膜和涂层,如反射镜、透光膜、滤光片等。这些光学器件在通信、激光、显示等领域具有重要的应用。  能源转换:气相沉积炉在能源转换领域也展现出广阔的应用前景。例如,在太阳能电池中,气相沉积炉可用于制备光吸收层、电子传输层等关键材料,提高太阳能电池的转换效率。此外,气相沉积炉还可用于制备燃料电池、锂电池等能源存储器件的关键材料。  三、气相沉积炉的技术优势与挑战  气相沉积炉的应用带来了诸多技术优势,如高精度、高纯度、高灵活性等。然而,也面临着一些挑战,如设备成本较高、工艺参数控制难度大等。随着技术的不断进步和创新,气相沉积炉有望在材料制备和器件制造领域发挥更大的作用。  四、总结与展望  通过对气相沉积炉的工作原理与应用领域的深入探讨,我们可以看到这一设备在材料科学和工业界的重要地位。随着科技的不断进步和创新,气相沉积炉有望在更多领域得到应用,推动材料制备和器件制造技术的发展。未来,我们可以期待气相沉积炉在设备性能提升、工艺优化以及智能化等方面取得更多突破,为人类社会的进步和发展做出更大贡献。

03 April 2023
真空烧结炉的节能技术分析

真空烧结炉的节能技术分析

  真空烧结炉的节能技术分析  真空烧结炉是一种高温加热设备,对于节能技术的运用可以从以下几个方面进行分析:  1、热能回收技术:真空烧结炉在加热过程中产生的热量可以通过热交换器进行回收利用,用于加热其他介质或者再次加热炉内物料,从而减少能源的消耗。  2、优化炉体结构:通过改善炉内结构和热传递方式,减少能量的损失和浪费。例如,采用效率高的保温材料和隔热材料,减少热量的散失和传递,提高能量的利用效率。  3、控制烧结过程:通过优化烧结过程控制,减少加热时间和温度,避免过度加热和热量的浪费,同时还可以提高产品的质量和生产效率。  4、采用节能设备:如采用效率高、节能电机、变频器、节能控制器等设备,可以降低能源消耗,提高设备的效率和使用寿命。  5、建立节能管理体系:通过建立节能管理体系,加强对能源的监控和管理,制定合理的能源消耗指标和节能措施,实现能源的节约和减排,提高企业的经济效益和社会效益。  综上所述,真空烧结炉的节能技术可以通过多方面的措施来实现,既可提高能源利用效率,又可降低能源消耗,同时还能提高产品质量和企业的经济效益。

jinnian金年会